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' Algorithms for solvents and spectral factors of
matrix polynomials

LEANG S. SHIEHY, YIH T. TSAYt and NORMAN P. COLEMAN}

A generalized Newton method, based on the contracted gradient of & matrix poly-
nomial, is derived for solving the right (left) solvents and spectral factors of matrix
polynomials. Two methods of selecting initial estimates for rapid convergence of the
newly developed numerical method are proposed. Also, new algorithms for solving
complete sets of the right (left) solvents and spectral factors without directly using the
eigenvalues of matrix polynomials are derived. The proposed computer-sided
method can be used to determine the spectral factorization of a matrix polynomial for
optimal control, filtering and estimation problems.

1. Introduction

Linear time-invariant multi-input multi-output systems are often described
by a set of coupled high-degree multivariable differential equations. The
Laplace transform descriptions of such systems are the matrix fraction
descriptions or polynomial matrix descriptions (Kailath 1980). The non- |
gingular denominator matrix polynomial of the matrix fraction description,
called a lambda (A) matrix (Frazer ef al. 1952, Lancaster 1966), characterizes the
properties of a multivariable (multi-input—output) system. The stability
property of a A-matrix has been investigated by Lancaster (1966), Jury (1974),
Anderson and Bitmead (1977), Papaconstantinou (1975), Shieh et al. (1978), .
Shieh and Sacheti (1978), and Shieh and Tajvari (1980). Recently, the algebraic j
theory of A-matrices has been investigated by Dennis et al. (1976), Gohberg et al.
(1978), Markus and Mereuca (1978), and Tsay et al. (1981). Also, numerical
methods for solying solvents and spectral factors of a matrix polynomial have .
been proposed by Dennis ¢! al. (1978) and Shieh and Chahin (1981). i

In this paper, a new numerical method, based on the contracted gradient of a o
matrix polynomial, is proposed for solving a complete set of right (left) solvents i
and spectral factors of a A-matrix. The proposed method can be applied to {
determine the spectral factorization of a matrix polynomial for optimal control, 1
filtering and estimation problems. .

2. Solvents and spectral factorization of A-matrices . f
An nth-degree mth-order monic A-matrix is defined as | ]

|

1

A= T A (1)

i=0

where A4,, i=1, ..., n are m x m complex matrices and A,(=1,) is an mxm
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1304 L. S. Shieh et al.

identity matrix. Aisa complex variable. Let X be an m x m complex matrix.
Two matrix polynomials, defined by

Agp(X)= ‘_go 4. 2)
and
4yX)= 3 X4, @)

are referred to as the right and left matrix polynomials associated with A-matrix
A(A), respectively. A right solvent R of 4(A) is defined by

Ap(R)= ,Zo A B*=0, (4)
and the left solvent L of A(A) is defined by
Ayly= T L4 =0, (®)
i=0

where 0, is an m x m null matrix. The right (left) solvents play an important
role in the analysis of the A-matrix. An important set of solvents is the complete
set of regular solvents (Gohberg e al. 1978, Markus and Mereuca 1978). The
complete regular right solvents R, s =1, ..., n have the following properties :

pRINp(R;) =0, i%j, 4 j=1,...n (6a)
and
‘g p(R) = p(A(])) (1))

where p(R,) is the spectrum of R, and p(A(A)) is the spectrum of A(A).
Similarly, a complete set of regular left solvents L,, i=1,...,7 has the
following properties :

HLICPL) =0, i%5, 5, i1, .n (1e)
U plL)=p(d() (15)

The existence and uniqueness of the complete set of solvents have been
investigated by Lancaster (1966), Dennis e al. (1976), Gohberg et al. (1978)
and Markus and Mereuca (1978},

If a monic A-matrix can be decomposed into the product of first-degree
linear A-matrices :

AQQ)= (M =8 )My =8,_,) ... (M u—38y) (8 a)

then (M, —8,),i=1, ..., n, are referred to as the completc. set of linear spectral
factors. The m x m complex matrices S,, i=1, ..., n, are the spectral factors
of the A-matrix 4()). Notice that 3, is a right solvent of 4(}), whereas S,
is the left solvent of A(A). Other spectral factors are, in general, not the right
or left solvents of A(A). ‘
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Algorithms for matriz polynomials 1305

Since S, is a right solvent ( & R,) of A(A), a deflated A-matrix can be obtained
by factoring out the linear spectral factor (A/,, — R,) from A4(A), as follows :

AD(R) 8 AANM = B = (M = S,) ... (M= 8,) (8%)

Determining a right solvent (£ R,®)) of 4%)()) yields the spectral factor
8, in (8 b). By continuing the same procedure, we can determine all spectral
factors of A(A) in (8 a). Notice that R,®) is a right solvent of 42)2) but not
that of A(A). Inthe same fashion, the spectral factors of 4(A) can be computed
from the successive left solvents of A(A) and the deflated A(A).

In optimal control and estimation problems, 4() is an even degree real
A-matrix with the property

A(N) = AT(-)) (9 a)

where T designates transpose. The spectral factorization (Youls 1961,
Anderson 1967) of A()) is described by

A(A) = 4,(0)4,T(- A) (9b)

where 4,(A) contains all latent roots of 4(A) in the LHP of the complex plane and
A,(~ ) in the RHP of the complex plane. To determine ‘4,(A) the procedure
for obtaining the spectral factors of A(A) in (8a) can be applied. However, by
using the property shown in (9 g), the computations can be simplified. In
other words, if R is a right solvent of 4(2) in (9) with all eigenvalues in the
RHP, then

A(A)= AMQAYM,, ~ R) (10a)
where A%} ))is an (n — 1) degree A-matrix. From the property of (9 §) we have
A(A)= AT(= A)=(— A, — RT) AT~ }) (105)

From (10 b) we observe that — RT is a left solvent of 4()). Thus, the factoriza-
tion of A(A)in (8 b) can be simplified by factoring out (AJ,, — R) and (Al + RT)
from the right and left of 4(A), respectively, if a right solvent R is found. The
deflated A(A) becomes

A®YA) = (A + RT) 1 A(AY M, — B)™ (10¢)

where 4®)(A) is an (n — 2) degree A-matrix.

Repeating the same procedure for (10 ¢) gives the desired spectral factors.
Thus, the spectral factorization of 4(A) can be determined from the obtained
spectral factors. '

In this paper, a new numerical method for solving the right (left) solvents
R (L,) and spectral factors (S;) of A(})is derived by using the contracted gradient
of a matrix polynomial.

3. Gradient of & matrix polynomial
The gradient of an nth-degree mth-order matrix polynomial is defined as a
fourth-order tensor VA4(X) with components (Vetter 1973, Fong 1971)

3
(VAD) s r=5e— (AX))y; 55, k1=, ..om (11)
X,

3g2




1306 L. S. Shiek et al.

where X, ;denotes the (k, l) element of X, {A(X)}, ; designates the (i, j) element
of A(X)and {VA(X)},, . denotes the (i, j, k, I) element of VA4(X).

Direct use of the gradient for the purposes of this paper involves the inversion
of a fourth-order tensor, thus causing computational difficulty. A contraction
operation (Fong 1971) on VA(X) with respect to an arbitrary m xm square
matrix Y is defined as

{VA(X)Y}*,a k;] lgl {VA(X)}(,j,k.lyk,l; .', j= l, ey M (12 a)
from which it {follows that
VA(X)Y=£—(A(X+17Y))|,.. (12 b)

where 7 is a scalar variable. Having the contraction operation defined in (12),
the contracted gradient VA(X)Y becomes an m xm matrix. Thus, compu-
tational algorithms can be easily derived and the computational difficulty can be
greatly reduced. The contraction operation in (12) can also be extended to the )
right (left) matrix polynomial in (2) and (3), as follows.

Given a A-matrix in (1) and the right matrix polynomial in (2), the contraction
operation on VAg(X) with respect to a matrix Y is

d
VAn(X)Yaa';' (AR(X +9Y))| pmo

*d
=Y E;"(A¢(X+'7Y)"")|v-o (13a)

=0

Each term inside the summation of (13 a) can be computed as
% (AU +1F))|pmo= 4¢ :)::: XeyXr-et (13b)
Substituting (13 b) into (13 a) and rearranging the indexes gives 4
V4R (X)Y = ig A::)::; ' xeyxa-ie a9
Performing index transformations or letting k=i +¢+1 and j =1, (14) becomes
VARX)Y = 2:;‘ Bup(X)Y X+ (15.a)
where B, 5(X) is the right matrix polynomial of the following A-matrix By(A) :
BA)= :':1;: A N1 (15 b)

Similarly, for the left matrix polynomial 4, (X), we have

VA X)Y = T X*+YB(X) (16)
bwl

where B, (X) is the Jeft matrix polynomial of the A-matrix B,(A) defined
in (15).
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4. A generalized Newion method for solving solvents
The right matrix polynomial Ax(X) can be expanded around an m xm
matrix X, as
AR(X) = AR(X,) + VAR(INZ - Xo) +O((X ~ X)) a7

where O((X ~ X)) is a matrix polynomial with high-degree terms of (X - X),
and VAR (X X ~ X,) is a contracted gradient of dimension m x m.
The first-degree approximation of (17) with [AX| < 1 becomes

Ap(X) 3 Ag(X,) + VAR(X)AX (18)
where AX A4 X - X,.
Define a recursive formula .
Xoa=X+AX,, (19 a)
Thus, (18) beéomes
Agp(X,, )= Ag(X )+ VAR(X)AX,,, (19b)
If X,,, is the right solvent of 4()), or 4gx(X,,,)=0,, then
Ag(X)+ VAg(X,)AX,,, =0, (20)

Solving AX ., from (20) and substituting it into (19 a) gives the recursive formula
for solving the right solvent of 4(A). To solve the AX,,; we use the contracted
gradient derived in (15), as follows.
From (15) we have
VAp(X)AX, = .21 Byr(X)AX (X 4 (21
Substituting (21) into (20) yields
Z Bip(X)AX 1 X k= — Ap(X)) (22)

AX,,, can be solved by using Lancaster’s Kronecker-product expanmon method
(Teay et al. 1981, Lancaster 1970) ag follows :

Vee {AX,,,}= ~ G(X;)~? Vec {Ap(X,)} (23a)

where
X;)= .gl (X4 T@Byr(Xs) (23%)

& designates the Kronecker product (Barnett 1971) and Vec {if} is a column
vector consisting of the column vectors M; of an m x m matrix M or

Vec (M}&[M,T, M,T, ..., M.TIT (23 ¢)

Note that the dimension of G(X,)is8 m®* x m®. B,p(X,) is a constant matrix of
the right matrix polynomial of the A-matrix B,{A) shown in (15 ) evaluated
at X,

Similarly, the recursive formula for solving the left solvents of A(A) is

Xoa=X+AX,, (24)
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where AX,,, is the solution of the following linear matrix equation :

VALX)AX = .Zl X FAX By (X )= - 4(X,) (25)
or
Vec {AX,,} = — H(X)-! Vec {4,(X)} (26 a)
where
H(X,)= .21 By (X,)TQX >+ (26%)
The convergent criterion in both (19) and (24) is
1AX ] <e (27)
where ¢ is an assigned small value.

Note that when m=1, 4A(}) in (1) becomes a scalar A-polynomial. The
recursive algorithm in (19) and (24) is the well-known Newton method. Thus,
the proposed algorithm in this section is a generalized Newton method.

5. * Algorithms for solving compiete sets of solvents

To construct a similarity block transformation (Dennis ¢ al. 1976, Tsay et al.
1981) for the analysis of a large-scale multivariable system, it is necessary to
determine a complete set of solvents.

Given a A-matrix 4(A) in (1), if a right soivent X is obtained, then 4(1} can
be described as

A(X)=B(A) (M~ R,) {28 a)
where
e n=1
B(\)= ‘; Ban-1~4 (28 b)

and the coefficients B, can be determined by

B"A‘+B‘_1.Rl, ‘.-1, vecg B=1 (28 c) *

The right solvent of B(A) is a spectral factor of A(A) but in general not the
right solvent of A(A). To resolve this problem, we have to determine the left
solvent of A(2) associated with B, by using the following relationship (Tsay
e at. 1981) :

L,=Q,"' R,¢, ifrank Q;=m (29)

where @, is the solution of the following linear matrix equation (Tsay ef al. 1981,
Lancaster 1870) :

T BrQ.B,-1 (30)
or
Vec {o,}-[ :g: Bﬂ@(}:,-«-l)]" Vec {1,)) (31)

e ma e w e e
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Equations (29) and (30) can be easily verified by substituting L, of (29) into the
left matrix polynomial of 4(2) in (28), or 4;(L,), and using the result of (30).
Also, following the similar formulation in (25) and solution in (26), we can solve
(30) for Q,, which is shown in (31). Once L, is found, 4(A) can be expressed by

A(A) = (A~ L) A9 2) = R4 V(X)) - Ly 43X X) (32a)
where
f=1
AGQ)= T A jo-1-i (328)
fwl
and
A‘a)-A“"LlA‘,_lu), “l, 2, eesy n-1l (32 c)

Assuming that R, is a right solvent of A@)(}), or A®XR,)=0,, then from (32 a)
we have the right matrix polynomial

Ap(By)= Ag*((Ry) Ry~ Ly Ap X Ry) = Oy, (33)

Therefore, a right solvent of 4@X2) is a right solvent of 4(1). Repeating the
same procedures, we can determine the complete set of right solvents. The
algorithm can be summarized as follows.

Algorithm 1—Complele sel of right solvents
(1) Set an index i=1.
(2) Find a right solvent R, of A(}) by using the recursive algorithm in (19 a)

and (23).
(3) Find
B(A)= .;: Bjan—s4
where

B"A,"’B’.‘R‘, j-l, 2, cony n—i' ‘nd B.-A.
(4) Find L‘ -Q‘-l R(Q( by n!ing (31)

a-i -
Ves @d={ T, BB Vee UL}
(8) Construct
AB(A) = 'F:‘_: A, pnt
where

A,a)-A,+L‘A!_lﬂ), j-l, 2, .oy n‘i, md AQG)-A.

(6) Replace A()) by 47)(A) and raise the index ¢ by 1.
(7) 1f i< n, then go to (2) ; otherwise stop.

Similarly, the algorithm for determining the complete set of left solvents is
described in Algorithm 2 as follows.

abenia . n
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Algorithm 2—Complete set of left solvents
(1) Set an indexi=1.
(2) Find a left solvent L; of A(}) by the recursive algorithm in (24) and (26).

(3) Find
B()= T B
=0
where
B,‘A""L‘B’_l, j=l, ceny n—i, md B.=A.
(4) Find
B=PLP
where the m x m matrix P can be constructed by
L) -1
Voo (PY={ T, -y} vee 1) :
=0

(56) Construct 42X ) of degree n—s by

AV(A)= 2 A @) An—i—
j=0

where
A,(l)gAj+A,_1(l) R‘, jsi, ceny ”"i, arnd A.a)-A'

(6) Replace 4(A) by A®)Y}) and raise the index ¢ by 1.

(7) If i< n, then go to (2) ; otherwise stop.

If a set of linear spectral factors is desired, then the following algorithm which
is derived from (8 a) and Algorithm 1 can be applied.

Algorithm 3—Linear spectral factors
(1) Set an index i=1.
(2) Find a right solvent R ( =8,;) of 4(}) by the recursive algorithm in (19 a)

and (23).
(8) Find
BN= 3 B
juo
where

B,‘A’+B,_‘S‘, jgl, ceny n-i, md B.-A.
(4) Replace 4(A) by B(A) and raise the index ¢ by 1.
{5) If i< n, then go to (2) ; otherwiss stop.

When the A-matrix of interest has the property that A(A)=AT(-A) of 5
2n degree and the spectral factorization is desired, we bave the following
algorithm.
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Algorithm 4—Spectral faclorszation
(1) Set an index s =1.
(2) Find a right solvent R,( =8,) of 4() by the recursive algorithm in (19 a)

and (23).
(3) Find
n-2%+1
B(A)= 2 B an-t+1-4
=
where

B,-Aj-I-B,_lS‘, j-l, seey n—2i+l, md B.BA‘

(4) Find
n-9
A9)= ¥ A,0) yn-8i—4
j=0
where

A’a)-B,_S‘T B!—l’ j-l, cony ﬂ-z‘, md A.ﬂ)-B°
(5) Replace 4()) by A%)(2) and raise the index s by 1.
(6) If s<n/2, then go to (2} ; otherwise stop.
The resulting spectral factorization is
A(2)=DT(— A)D(X)

where

D(A) -(MR-SN’) (M--S,)(M.—lg‘)

6. Normalization and initial guesses

The rate of convergence of the proposed numerical method heavily depends
upon the initial guesses. In order to derive a systematic method for deter-
mining the initial guesses, the A-matrix is normalized such that the latent roots
of the A-matrix are uniformly distributed around a unit circle with centre at
A=0.

The arithmetic mean of the latent roots of a given A-matrix in (1) is

el
‘_gl Nt 4,
- (34)
am n .
where A, are the latent roots of 4(A)=0and ¢, 4, is the trace of a matrix 4,.
Sabstituting
Amy+k, (36)
into (1)-results in
AWy)=m] g+ 4,V y"14 .. + 4,0 (36)
where

t,4,=0

i
J
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The geometric mean of the latent roots of 43)(y)is
nm L/nm
Ic,:( Il a.,) =(det 4,a)iinm (37)
i=1

where «, are the latent roots of 4%)(y)=0.
Assuming that k, % 0 and substituting

y=[kylz (38)
into (36), we have
AV =] 7+ A, @14 | 4 A Wy A ® (39)
where {det 4,%)|=1. .

A ®)(z) is referred to as the normalized A-matrix of 4(A). The initial guesses
for Algorithms 1 to 4 can be set in the following two ways.

(1) Lin’s method (Lin 1943)

The scalar version of Lin's method is extended to the matrix case for deter-
mining the initial guess. The initial guess for the recursive algorithm of the right
solvent of 4®)(z)in (39) is

Ry={4,,¥}4,® ifrank 4, ,®=m (40)

The initial guess for the recursive algorithm of the left solvent of A43)(z)
becomes
LimA,8{4, @)1 if rank 4, ®=m {41)

(2) Unitary matriz method

Since the latent roots of the normalized A-matrix has its arithmetic mean at
zero and the geometric mean at unity, the initial guess can be set to a matrix
with the magnitudes of all eigenvalues equal to unity. The matrix is a unitary
matrix.

The desired solvents or spectral factors of the A-matrix can be determined
by denormalizing the solvents or spectral factors obtained from 4®)z) via the
transformations in (38) and (35). .

7. Examples

Two examples are illustrated for finding the solvents, spectral factors and
spectral factorization of A-matrices. The computations were carried out on a
PDP-11/70 using single precision floating point only.

Example 1
Given the A-matrix

4 2 12 11 19 14
AN =123+ ] Ay A+ (42)
-2 1 -2 28 16 36

find the complete set of regular right solvents and its linear spectral factors.
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Using the normalization scheme in § 6, we have
k= —1-83333 (43 a)
ky=1-071363 (43b)
and the normalized matrix polynomial 4 @)z} in (39) becomes
—1-40009 1-866678 6-46154  3-19447
J 24+ [ ] z

A®(z)m I3+
—1-86678 1-40009

4-64650 10-8176

3-48240 0-451770
+ (44)

10-5263  1-65273
The initial gueas by using Lin’s method is

—0-0734806 0-00712910
—0941503 —0-155843

Applying Algorithm 1 to (44) and using the initial guess B, gives the right
solvent of 4?)(z) at the fourth iteration with an error tolerance of ¢=10-% in
(27). Denormalizing the obtained solvent by using (35) and (38) yields the
desired right solvent

—-2-00000 —0-37887 x 10~?
R= (45 b)
| —1-00000 —2-00000
The corresponding left solvent, which can be determined from (29) and (31), is
- 2-46154 0-115385
L= (45 ¢c)
—~1-846156 —0-153846

Now factoring out (A, —L,) from the left of A(), or using (32), we have

1-53846 2:11538 776923  6-42308
ADQA)= I 2+ A+ (46 a)

| —3:84615 546154 10-7692  15-6923
The normalized A-matrix with k, = —1-750 and ky = 2:70594 is

AV(z)m Izt +

C — 0724901 0-781756 1-11162 0-371635
z+ (46 b)

| ~1.42138  0-72490
The initial guess by Lin’s method is
[ 0-0474374 1:21660 ]

1-06632 1-25607

(46 ¢c)
-1-37797 0-652733

el
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The right solvent of 47)(z) can be obtained at the thirteenth iteration with the
same error tolerance of ¢ =10-%. After denormalization we have the desired
right selvent of 4@)(A) or another right solvent of 4(2), as follows :

—0-999976  1.49996
R,= (46 d)

-2-00004 - 2-00001
The corresponding left solvent is

—6-94525 3-35920
L’ = (46 e)

—9-64537 3-94526
After factoring out (Al;— L,) from the left of 44)(A) we have

— 540679 5-47459
(47 a)
—13-4915 9-40680

From (47 a) we have the desired right solvent of 4®)(2) or the last right solvent
of A(Q) as

A®(2) =1,A+[

R'-

540879 - 5-47459
(47 )

1349150 —9-40680

The complete set of linear spectral factors of A(A) in (42) can be determined by
using Algorithm 3. "The result is

A(A) =(M,—8g)(My—8y) (M= 8,) (48)
where
T —2:00000 —0-37887 x 10-?

| —1-00000 — 2-00000 ]mm...w-.
[ —0-99996 2-99991

| —1-:00002 —2-00004 |;i0ration number=13

[ —1-00004 —4-9999]7
S’-

400002 - 2’99986J iteration sumber = 0

It might be interesting to investigate the relationship between the eigenvalues
of A(A) and the corresponding solvents and spectral factors. The eigenvalues of
A(]) or solvents and spectral factors are

0(81)'”(31) =-2 -2

o(8,) =o(Ry) = —1-5% j/11 (49)

o8y) = o Ry) = —2 2 j4/T
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From (49) we observe that, although we have repeated latent roots with a
Jordan chain of length 2 and two pairs of complex roots, the corresponding
solvents and spectral factors are all real. This peculiarity has important
applications in the analysis and synthesis of large-scale multivariable control

systems.
Ezample 2
Given & A-matrix
0 -6 -37 3
A(A) = I 28+ A+ A
6 0 3 -~18
" 0 49 68 2
+ A (50 a)
. ~49 O 2 26
and f
A(X)=A4T(-}) (50 b)
it is desirable to find the spectral factorization of A(A) such that
¢

A(A)= 4,(2)4,7(-2) (81)

where 4,(2) contains all latent roots of 4(2)in the LHP of the complex plane and
A,T(— A) in the RHP of the complex plane.
Uksing Algorithm 4 and the initial guess I, (a unitary matrix), we have

INPSEN R

g - Ay(A) = (Mg~ S} (A, - Sy) (52)
where
" —0-99999 2.000017
S, = .
" L1000 - 000000 s, 4
" — 3-99998 1-99996 ] ’ ,
S’ = [
| —0-99000  — 200099 |ttration sumber-s !

Thus, 4,(A) becomes !

4-99997 - 3-99997 1-09996 —7-99996
AN =T+ A+ (53)

1-99909 3-99998 4-99996 0-99990

Observe that, although the latent roots of A4 () are all complex, i.e.
Am—135v2; H=T1ivT): 12iv2; §T1)iv7) (54)
8, and 8, are real matrices.
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8. Conclusions

A generalized Newton method, which is based on the contracted gradient
of a matrix polynomial, has been derived for solving the complete sets of solvents
and spectral factors of a matrix polynomial without directly using the eigenvalues
of the matrix polynomial. Lin’s method and the unitary matrix method have
been proposed for determining the initial estimates of the solvents and spectral
factors. Thus, the convergence speed of the new numerical metheod is improved.
The proposed method can be used to determine the spectral factorization of a
matrix polynomial for optimal control, filtering and estimation problems. The
obtained solvents can be used to construct a block similarity transformation

natrix for the decoupling of a large-scale multivariable control system.
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